Categoría: Mortalidad

Efectos del mercurio en salud humana


A propósito de la situación suscitada con atún y mercurio en Colombia, con la firma van Camps, se comparten entradas en el sitio:

https://www.facebook.com/groups/161366980592425/search/?query=mercurio

vale la pena conocer lo que refiere la OMS sobre el mercurio y la salud humana, en

http://www.who.int/mediacentre/factsheets/fs361/es/

Fed-Up


Conocí este documental por un bloguero que describió su valiente lucha contra la ingesta de azúcar.

Este es el blog:

http://www.latercera.com/noticia/tendencias/2016/01/659-664289-9-en-guerra-contra-el-azucar.shtml

Versión en Youtube subtitulada en español

English version

Lo que constituye  el dulce de chocolate, en: http://despiertavivimosenunamentira.com/lo-que-hay-dentro-de-un-bote-de-nutella/

 

“Inflammaging” y envejecimiento


The association between the increase in life expectancy in humans and age related changes in the immune system promotes that individuals are exposed longer to endogenous and environment antigens which allows an activation of the innate immune system and the subsequent establishment of a low grade chronic inflammation state with an increased expression of proinflammatory cytokines (tumor necrosis factor alpha, interleukin 6, etc.). This inflammatory state referred as inflammaging.
Con el aumento en la expectativa de vida del ser humano, los individuos se encuentran expuestos por más tiempo a distintos antígenos que, junto con el envejecimiento del sistema inmunológico, favorecen el establecimiento de un estado inflamatorio crónico de bajo grado con aumento en la expresión de citocinas proinflamatorias (factor de necrosis tumoral alfa, interleucina 6, étc.). Este estado denominado inflammaging se caracteriza por un envejecimiento de origen inflamatorio.

INTERVENCIONES
 El ejercicio físico es hasta el momento una de las posibles intervenciones útiles para evitar los efectos de la inflamación en el origen de enfermedades asociadas al envejecimiento. El ejercicio promueve un estado de estrés regulado. Éste incrementa los niveles séricos de IL-6 lo cual conduce a un mayor consumo de tejido adiposo al favorecer la lipólisis para producir de forma eficiente energía durante la actividad física. Además, los incrementos en la IL-6 se relacionan con una reacción compensadora caracterizada por la producción de IL-10 y otras citocinas con funciones antagónicas al receptor de la IL-1 por lo que induce un equilibrio en la balanza de la inflamación.

Las asociaciones entre el riesgo para la Enfermedad de Alzheimer (AD) y la ingesta de Acido ascórbico (AA)  se han investigado en varios grandes estudios de población, tanto en los EE.UU. y también en una muestra grande de Europa. Uno de los primeros estudios parecía muy prometedor cuando los datos se informaron de la Healthy Aging Chicago Proyecto (CHAP) que muestra que ninguno de los mayores a 65 años, sobre los 633 participantes sin demencia que tomaron ácido ascórbico, desarrollaron AD en el período de seguimiento (promedio de 4 años ). Un patrón más complejo de los efectos se informó en el Estudio de Envejecimiento Honolulú-Asia que comprendía hombres de 71 años a 93 años. En los individuos cognoscitivamente intactos, la ingesta de ácido ascórbico se asoció con una mayor probabilidad para un mejor rendimiento de función cognitiva. La alta ingesta de ácido ascórbico y vitamina E se asociaron con una menor probabilidad de demencia vascular.(Referencia: Nutrients. 2014 Apr 24;6(4):1752-81.) Sigue leyendo

E-pacientes, cada vez más frecuentes


200

En una encuesta realizada para Astellas Innovation DebateTM, casi una quinta parte (18%) de las 200[1] personas encuestadas dijeron que les agradaría tener una consulta con su médico general a través de una cámara web por su teléfono o computadora en cualquier circunstancia. Lo que fue tal vez sorprendente es que la disposición a tener una «consulta virtual» es máxima en personas mayores, señala la encuesta: apenas a 7% de los menores de 25 años les gustaría tener una conversación con su médico general a través de una cámara web, en comparación con 22% de los mayores de 55 años.

Otro 41% dijeron que les gustaría ver a su médico general a través de la cámara web en algunas circunstancias.

De éstos, 72% afirmaron que les agradaría tener una consulta a través de la cámara web para qué se les repitiera una receta y 71% estarían satisfechos de recibir los resultados de una prueba de esta manera.

Dos terceras partes (65%) de las personas estarían contentas de consultar en torno a una enfermedad menor a través de la cámara web y seis de 10 (60%) consultarían de esta manera a cerca de un trastorno persistente. Sin embargo, alrededor de 42% dijeron que sólo considerarían una consulta en línea si esto significara que se les garantizaba una consulta al siguiente día.

Al tratarse de enfermedades que causan algún grado de vergüenza, parece que la consulta personalizada se vuelve más importante y tan sólo 18% de las personas desearían discutir a través de la cámara web un problema como la infestación de la cabeza por piojos o un exantema.

Entre los motivos referidos por un tercio de las personas (33%) a las que no les gustaría tener una consulta con el médico general a través de la cámara web fueron: a) querían comentar su trastorno en forma adecuada en persona (70%); b) necesitaban una exploración física (55%) o c) les preocupaba que no se pudiese identificar una enfermedad importante si se comunicaban con su médico general por vía electrónica (38%). Sólo 14% dijeron que se debía a que no tenían acceso a una cámara web o a la Internet.

Al comentar sobre los hallazgos de la encuesta, el médico y operador de la emisión, Dr. Kevin Fong, dijo:

«La revolución digital ha modificado la forma en que pensamos en torno a casi todas las maneras de interacción humana, incluida nuestra relación con nuestros médicos. Parece que las personas están dispuestas a aceptar nuevas formas de tener acceso a servicios de salud que lo que la profesión médica a veces presupone».

«Lo que es interesante sobre la investigación de Astellas Innovation Debate es que tendemos a pensar en las personas jóvenes como las más versadas en cuestiones digitales, pero son los mayores de 55 años los que están más dispuestos a interactuar con sus médicos a través de la cámara web».

En la actualidad, sólo 3% de los médicos generales ofrecen a sus pacientes consultas a través de la cámara web, aunque 36% tienen pensado comenzar a hacerlo en los próximos tres años a medida que el NHS se prepare para operar por medios electrónicos. Sin embargo, 62% de los médicos generales dijeron que, que era improbable que pudiesen ofrecer consultas a los pacientes en línea hacia el 2018.

Solo que se necesita una alta habilidad y experiencia clínica del médico, que al ser tener la integración del saber y la experiencia médica, con lo mejor de la evidencia disponible en la literatura científica, podrá brindar los mejores medios para su paciente.

Fuente: Medical News Today

http://www.medicalnewstoday.com/releases/288571.php

Tomado con modificaciones de http://www.medcenter.com/contentnews.aspx?pageid=128787&resource_center=364&langtype=15370&esp_id=233&id=225561

Referencia adicional:

Pablo Young, Bárbara C. Finn , Julio E. Bruetman , John D. C. Emery , Alfredo Buzzi. William Osler: el hombre y sus descripciones. Rev Med Chile 2012; 140: 1218-1227

Public health


Excellent and very descriptive site in Tumblr Website about public health. The infographics are superb and very easy to understand.

http://pubhealth.tumblr.com/

DSC20

Guías clínicas varias de manejo en Diabetes Mellitus


HBA1cDNA

Sobre el tema de diabetes se han dejado al alcance en un click, los artículos de consenso, de guías de manejo, en el sitio

https://www.dropbox.com/sh/92tyb8287uysttk/2do_528aiO

Con base en material descargado de la revista Diabetes Care, de la Asociación Americana de Diabetes, en el link

http://care.diabetesjournals.org/content/37/Supplement_1.toc

 

Articles in My Open Archive


[object HTMLTextAreaElement]

vía Articles in My Open Archive.

Mucositis oral


Mucositis oral

Revisión sobre estomatotoxicidad causada por quimioterapia, radioterapia sobre mucosa oral. La importancia de la mucositis es que es toxicidad limitante de tratamiento para cáncer, además de los riesgos de mortalidad.


About the author

Nosotros subscribimos Los Principios del código HONcode de la Fundación Salud en la RedNosotros subscribimos los Principios del código HONcode.
Compruébelo aquí.

 

                                                Share

 

Anatomía de membrana mucosa oral.

La mucosa (llamada también membrana mucosa), es el tejido húmedo que recubre órganos y cavidades corporales particulares en todo el cuerpo, incluyendo la nariz, la boca, los pulmones y el tracto gastrointestinal. Particularmente, la mucosa oral es compuesta por 5 capas:

  • la capa más externa es el epitelio.
  • la capa subyacente es la lámina propia, que se extiende dentro del epitelio y comprende las capas de fibroblastos, macrófagos y capilares.
  • la capa mas interna, la submucosa.
  • capa muscular.
  • capa de tejido conectivo. 

Relación entre epitelio y lámina propia en mucosa oral


image
La figura muestra en la parte superior el epitelio (que puede o no ser queratinizado, debajo del cual está la llamada lámina propia, que comprende las capas desde los fibroblastos hasta la matriz extracelular; subyacente están las capas muscular y de tejido conectivo.

Generalidades de mucosa de recubrimiento

  • El epitelio de la mucosa de recubrimiento no es queratinizado, es móvil y constituye la mucosa yugal o los carrillos, la parte interna de los labios, la superficie ventral de la lengua, el piso de la boca y el paladar blando. 
  • Es el 60% del epitelio de la cavidad oral.
  • Desarrolla mucositis con mayor facilidad. 

Generalidades de mucosa masticatoria

  • Está constituida por epitelio queratinizado. A diferencia de la mucosa de recubrimiento, no es móvil. Recubre la superficie del paladar duro, las encías.
  • La queratina en dicho epitelio permite soportar estrés mecánico de la masticación.
  • No desarrolla mucositis con facilidad.

Generalidades de mucosa especializada

Es la mucosa del dorso de la lengua, contiene las papilas gustativas. El dorso de la lengua es la única excepción de estructura móvil que tiene epitelio queratinizado.

No desarrolla mucositis con facilidad.

En la figura se muestra esquemáticamente la localización anatómica de los diferentes tipos de mucosa. 

Las regiones más comúnmente afectadas por mucositis incluyen el paladar blando, la cara ventral de la lengua, el piso de la boca, mucosa yugal o de los carrillos, la  cara interna de los labios, es decir, las zonas donde hay mucosa de recubrimiento sin queratina. 


Generalidades de mucositis

La mucositis se define como aquella lesión de las membranas mucosas, caracterizada por eritema oral, ulceración y dolor (Scully C et al, 2004), a consecuencia de la administración de quimioterapia antineoplásica, radioterapia, solas o combinadas (López F et al, 2005). La mucositis oral es un tipo de toxicidad directa de la terapia oncológica (Peterson DE, 1992).  

Las consecuencias de esta inflamación, no sólo afectan a la calidad de vida del paciente, sino que además puede suponer una limitación en la aplicación del tratamiento, así como un aumento de la estancia hospitalaria y de los costos del tratamiento.

La mucositis es una condición dolorosa que limita la adecuada nutrición de estos pacientes, que los lleva a diferentes estados de desnutrición y deshidratación, y hace necesaria la nutrición enteral o parenteral y la hidratación por vía intravenosa. Otras complicaciones como la interrupción del sueño o sueño no reparador, dificultades para hablar, reducen la calidad de vida del paciente.

Las causas principales de mucositis pueden atribuirse tanto a la “estomatotoxicidad directa” como a la “estomatotoxicidad indirecta”. La de tipo directo comienza por la lesión primaria de los tejidos orales mientras que la de tipo indirecto es causada por toxicidad no oral que afecta secundariamente la cavidad oral, por ejemplo a través de mielosupresión, pérdida de células inmunes situadas en los tejidos y pérdida de elementos salivales protectores (Peterson DE, 1992).


Fisiopatología de mucositis oral

Aunque todos los tejidos de la boca son susceptibles a mucositis, solamente los tejidos móviles de la mucosa de recubrimiento desarrollan mucositis. La mucositis oral resulta de una inhibición directa en la Solamente los tejidos móviles de la mucosa de recubrimiento desarrollan mucositis.  replicación del ADN  de las células de la mucosa móvil no queratinizada, que conlleva a la reducción de la capacidad regenerativa del epitelio basal.

La vida promedio de las células epiteliales de la mucosa oral es en promedio de 4 días, el reemplazo celular en la capa superficial del epitelio tiene lugar cada 7 a 14 días. Cuando este reemplazo disminuye ocurren las lesiones ulcerativas en la superficie. Estos eventos resultan en una atrofia de la mucosa, defectos del colágeno y una eventual ulceración.

Tiempos de recambio y reparación celular

Días D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11 D12 D13 D14
Reemplazo con nuevas células Mayor rango  de  aparición  de  nuevas  células  en  la mucosa oral
Menor rango de aparición de nuevas células en la mucosa oral
Células epitelia-les Rango promedio de vida = 4 días
Días requeridos para reparación de mucosa lesionada Tiempo más corto 1 2 3
Tiempo más largo 1 2 3 4 5 6 7 8 9 10

D1=día 1; D14=día 14

La reparación de la mucosa normal con reposición de nuevas células puede tomar entre (7-4 y 14–4) 3 y 10 días, representados gráficamente por los cuadros oscurecidos.

El desarrollo de la mucositis esta resumido en 4 fases, descritas a continuación.

Principales fenómenos fisiopatológicos y evolución de mucositis

FASE DIAS DESCRIPCION LUGAR DE LESIÓN
Fase 1: Fase de Iniciación  0 Daño por radicales libres y citoquinas liberadas dañan células basales de mucosa y submucosa. Células basales de mucosa.

Submucosa

Fase 2: Fase de Daño primario 4 a 5 Activación de NF-kB, de genes de respuesta inmediata. Epitelio

Lámina propia

Fase 3: Fase ulcerativa 6 a 12 Aumento de actividad de citoquinas pro-inflamatorias (TNFa; IL-1; IL-1b; IL-6) que activan metaloproteasas Mucosa: inicia ulceración.

Circulación sistémica: puede ser alcanzada por bacterias, entonces ocurre bacteriemia y/o sepsis

Fase 4: Fase de recuperación 12 a 16, o más – Recambio y diferenciación en la proliferación epitelial.

– Normalización de la flora microbiana y en el conteo de las células sanguíneas.

Señales de matriz extracelular en la lámina propia.


Factores de Riesgo para mucositis oral.

Hay factores de riesgos directos e indirectos, los cuales se describen a continuación.

Factores directos de riesgo para ocurrencia de mucositis:

Agentes quimioterapéuticos citotóxicos (incluyendo su posología, sea de dosis estándar o de dosis alta). En la tabla a continuación se listan los agentes marcadamente tóxicos y los tóxicos que producen mucositis. Los agentes marcadamente tóxicos se asocian con mucho mayor riesgo de mucositis.

Agentes marcadamente tóxicos asociados a mucositis

Actinomicina D Daunorrubicina Metotrexato
Amsacrina Docetaxel Mitoxantrona
Bleomicina Doxorrubicina Plicamicina
Clorambucilo Etopósido Tioguanina
Cisplatino Floxuridina Vinblastina
Citarabina 5-Fluoruracilo Vindesina
Carboplatino Idarrubicina Paclitaxel
Carmustina Ifosfamida Procarbazina
Ciclofosfamida Irinotecan Estreptozotocina
Dacarbazina Lomustina Tiotepa
Dactinomicina Mecloretamina Topotecan
Epirrubicina Melfalán Vincristina
Estramustina Mercaptopurina Vinorelbina
Fludarabina Mitramicina Interleuquina 2
Gemcitabina Mitomicina C Interferones
Hidroxiurea Mitotano

(Kostler WJ et al, 2001)

Factores indirectos de riesgo para ocurrencia de mucositis:

  • Mielosupresión
  • Inmunosupresión por pérdida de células inmunes tisulares
  • Secreción reducida de IgA (inmunoglobulina A)
  • Infecciones bacterianas, virales o micóticas.
  • Pérdida de elementos salivales protectores


Riesgo de Mucositis según tratamiento antineoplásico.

La incidencia de la mucositis oral depende del tipo de terapia antineoplásica. Se considera que afecta un promedio de 40% de los pacientes que son sometidos a quimioterapia convencional, un 75% de aquellos que reciben quimioterapia a dosis elevadas, un 70-80% de los que son sometidos a trasplante de médula ósea y prácticamente la totalidad de los pacientes que reciben radioterapia para tumores de cabeza y cuello y tumores gastrointestinales  

Tabla riesgo de mucositis por terapia antineoplásica

Ítem Tipo de terapia Riesgo de mucositis
1 Quimioterapia convencional 40%
2 Quimioterapia de dosis alta 75%
3 Trasplante de médula ósea 70-80%
4 Radioterapia en cabeza/cuello 100%


Riesgo de mucositis en terapias antineoplásicas.

El mayor riesgo de mucositis ocurre en radioterapia, seguido de quimioterapia (implica generalmente quimioterapia antineoplásica de dosis convencional) y trasplante de médula ósea (implica generalmente quimioterapia antineoplásica de dosis elevadas).

Aspectos epidemiológicos de mucositis Oral.

El conocer los aspectos epidemiológicos y poblacionales sobre cáncer en Colombia, permite una estimación del tamaño de la población tratada que tiene mucositis, esto ratifica la importancia de la mucositis como complicación en la población de pacientes oncológicos en nuestro país.

La incidencia de la mucositis oral depende del tipo de terapia antineoplásica. Se considera que afecta un promedio de 40% de los pacientes que son sometidos a quimioterapia convencional (Sonis ST et al, 1978), un 75% de aquellos que reciben quimioterapia a dosis elevadas (Pico JL et al, 1998), un 70-80% de los que son sometidos a trasplante de médula ósea (Woo SB et al, 1993; Bearman Si et al 1988) y prácticamente la totalidad de los pacientes que reciben radioterapia para tumores de cabeza y cuello y tumores gastrointestinales (Kostler WJ et al, 2001; Buchsel PC, 2003) 

Mucositis en Colombia

Aunque no se dispone de estadísticas exactas sobre cifras de mucositis en Colombia, se estima que aproximadamente 10.000 pacientes al año presentarán patología de este tipo. Se asume una incidencia de mucositis de aproximadamente 42% en promedio y una población estimada de pacientes con cáncer de aproximadamente 55.000 – 60.000 pacientes para el 2006 (Piñeros M & Murillo R, 2004)


Incidencia de cánceres con mayor asociación a mucositis en la población colombiana y estimación de mucositis.

Tipo de Cáncer Hombres Mujeres Sub-Total Riesgo de mucositis Pacientes con mucositis
Cavidad oral y faringe 891 628 1.519 90% 1.367
Colon y recto 1.504 2.158 3.662 18% 659
Estómago 4.529 3.179 7.708 18% 1.387
Pulmón 2.432 1.463 3.895 12% 448
Linfoma no Hodgkin 979 692 1.671 62% 1.036
Leucemia 1.427 1.284 2.711 80% 2.169
Glándula mamaria 4.677 4.677 37% 1.745
Ginecológico 6.889 6.889 18% 1.261
Promedio       42%  
 
Totales 11.762 20.970 32.732   10.072

Aspectos clínicos de mucositis oral

Síntomas de mucositis oral.

  • Dolor: es siempre el primer síntoma.
  • Exceso de secreciones orales viscosas, que producen estimulación del reflejo nauseoso y tusígeno.
  • Disfagia: sensación de dolor al deglutir
  • Disgeusia: pérdida del gusto
  • Disomia: alteración del olfato
  • Aversión a algunos alimentos.
  • Fiebre, en algunos casos cuando hay infección. 

Consecuencias clínicas de la mucositis oral.

El conocer tales impactos es un argumento importante para argumentar disminución de costos del tratamiento de cáncer como “enfermedad de alto costo”.  De aquí que su conocimiento brinde herramientas para la prescripción institucional:

Impacto en la duración en la remisión de los síntomas, con prolongación de los tiempos de estancia hospitalaria en 3 a 6 días más.

Uso de opioides parenterales: suele ocasionar eventos adversos como náuseas, sedación, constipación, confusión y limitación de las actividades del paciente.

Aumento de tasas de infección en 2,1 veces: el paciente puede desarrollar incluso hasta invasión del torrente circulatorio (sepsis), que hace necesario el uso de varios antibióticos y antimicóticos parenterales por tiempos prolongados. La presencia de mucositis cuadruplica los riesgos de infección por Streptococcus viridans.

Desnutrición / alteración de la nutrición por la incomodidad al deglutir, que puede llegar a hacer necesaria nutrición parenteral total. Dicha nutrición implica colocación de catéter central, por cirujano general, con los consiguientes controles radiográficos, de control de infección, de cuidados de enfermería, de controles de laboratorio clínico, con una gran elevación de costos.

Impacto en las tasas de curación y disminución de la expectativa de vida.

Implicaciones Psicológicas.

Deshidratación.

Impacto en la capacidad de hablar. 

Evaluación de la mucositis mediante escalas.

Existen tres razones principales para asignar puntajes a la severidad de la mucositis:

Para evaluar la toxicidad de un régimen quimioterapéutico o radioterapéutico en particular

Para usar como una herramienta en los cuidados de enfermería

Para establecer la eficacia de un tratamiento en pacientes con mucositis.

Aunque no hay un método de evaluación y puntaje universalmente aceptado, existen varias escalas diferentes que han sido desarrolladas y son ampliamente usadas e incluyen:

La escala de mucositis de la OMS

La escala de evaluación de mucositis oral (OMAS)

La escala de la Organización Europea para la investigación y tratamiento del cáncer (EORTC/RTOG)

Evaluación de la mucositis mediante escalas de OMS.

La organización mundial de la salud (WHO) ha desarrollado un sistema medido en grados de mucositis, basado en la aparición clínica y el estado funcional de la patología.

Escala de mucositis de la OMS

OMS 0 Sin anormalidades
OMS 1 Eritema, leve hipersensibilidad, sin tratamiento
OMS 2 Dolor que requiere de analgésicos no opioides: deglución con dificultad.
OMS 3 Ulceración. Dolor que requiere de analgésicos opioides: deglución imposibilitada
OMS 4 Necrosis; requiere de soporte con Nutrición parenteral.

La importancia de la escala OMS es que es fácil y rápida de aplicar para los estudios clínicos. 


Evaluación de la mucositis mediante escala OMAS

La escala denominada OMAS es de mayor exactitud en la puntuación de la mucositis, si bien su aplicación toma más tiempo.

Está demostrado que por cada punto de aumento en la escala de mucositis “OMAS”, existe asociación con los siguientes eventos:

  • 3,9 veces aumento del riesgo de mortalidad a 100 días
  • 2,1 veces aumento del riesgo de padecer una infección significativa
  • 2,7 días adicionales de nutrición parenteral total
  • 2,6 días adicionales de hospitalización
  • 1 día adicional con fiebre. 

Escala de Mucositis OMAS

Localización Puntaje de Ulceración† Puntaje de Eritema‡
Labio
Superior

Inferior


0, 1, 2 ó 3

0, 1, 2 ó 3


0, 1, 2

0, 1, 2

Mucosa bucal
Derecha

Izquierda


0, 1, 2 ó 3

0, 1, 2 ó 3


0, 1, 2

0, 1, 2

Zona ventrolateral de lengua
Derecha

Izquierda


0, 1, 2 ó  3

0, 1, 2 ó 3


0, 1, 2

0, 1, 2

Piso de la boca
Suave

Duro


0, 1, 2 ó 3

0, 1, 2 ó 3


0, 1, 2

0, 1, 2

†0=ninguno; 1=<1cm2; 2=1-3 cm2; 3= ≥3cm2

‡0=ninguno; 1= no severo; 2=severo

OMAS: Acrónimo de Oral Mucositis Assessment Scale 

Si bien hay otras escalas, al comparar la escala OMS se encuentra que califica la mucositis en grados según la evolución clínica y estado funcional de la patología, mientras que la escala OMAS cuantifica la mucositis, lo que permite adicionalmente predicciones clínicas.

Importancia de la mucositis en el desarrollo de nuevos tratamientos para el cáncer

La mucositis se ha vuelto la principal limitante para la introducción de nuevos regímenes de quimioterapia citotóxica.  Aproximadamente el 60% de los pacientes que reciben radioterapia exclusiva y más del 90% de aquellos en tratamiento con esquemas combinados de radio y quimioterapia desarrollarán un cuadro de mucositis severa (Sutherland SE & Browman GP, 2001). 

Metas del tratamiento de la mucositis oral

Con el tratamiento de la mucositis oral se persiguen varias metas, las cuales son:

  • Liberar de irritación o ulceración cavidades orales, labios y encías.
  • Procurar higiene oral.
  • Aliviar el dolor asociado con mucositis.
  • Evitar déficit nutricional.
  • Evitar sobreinfección
  • Facilitar la comunicación verbal a través del uso de medicamentos para el dolor y medidas frecuentes de cuidado oral.

(Sonis ST & Fey EG, 2002)

Una apropiada valoración de la mucosa oral es requerida antes de iniciar la quimioterapia citotóxica o la radioterapia, que también debe hacerse a lo largo del tratamiento. En general, esta valoración incluye una evaluación física y nutricional del paciente, combinada con una detallada inspección de la cavidad oral y examen dental, tratamiento odontológico para erradicación de caries. 

Un tratamiento estándar de mucositis inducida por quimioterapia citotóxica y radioterapia no ha sido establecido.
Los protocolos de cuidado oral generalmente incluyen limpieza de la mucosa oral, mantenimiento y lubricación de labios y tejidos orales tratando de aliviar dolor e inflamación, uso de antiinflamatorios y analgésicos opioides que dependiendo de la severidad, serán administrados por vía parenteral.


Referencias

  1. Bearman SI, Applebaum FR, Buckner CD, et al. Regimen-related toxicity in patients undergoing bone marrow trasplantation. Journal of Clinical Oncology 1988; 6: 1562-68
  2. Buchsel PC. Gelclair® oral gel. Clinical Journal of Oncology Nursing 2003; 7(1): 109-10
  3. Kostler WJ, Hejna M, Wenzel C et al: Oral mucositis complicating chemotherapy and/or radiotherapy. Options for prevention and treatment. CA a Cancer Journal for Clinicians 2001; 51(5): 290-315
  4. López F, Oñate R, Roldán R et al. Valoración de la mucositis secundaria a tratamiento oncohematológico mediante distintas escalas: Revisión. Medicina Oral, Patología Oral y Cirugía Bucal. 2005; 10(5): 412-421.Pico JL, Avila-Garavito A, Naccachie P. Mucositis: Its occurrence, consequences ans treatment in the oncology settingThe Oncologist 1998; 3:446-51
  5. Peterson DE. Oral toxicity of chemotherapeutic agents. Seminars in Oncology 1992; 19(5): 478-491
  6. Piñeros M, Murillo R. Incidencia de cáncer en Colombia: importancia de las fuentes de información en la obtención de cifras estimativas. Revista Colombiana de Cancerología 2004; 8: 5-14.
  7. Sonis ST, Fey EG. Oral complications of cancer therapyOncology 2002; 16: 680-695 
  8. Sonis ST, Sonis AL, Liberman A. Oral complications in patients receiving treatment for malignancies other than of the head and neck. The Journal of the American Dental Association1978; 97: 468-72
  9. Scully C, Epstein J, Sonis S: Oral mucositis: a challenging complication of radiotherapy, chemotherapy and radiochemotherapy. Part 2. Diagnosis and management of mucositisHead and Neck 2004; 26:77-84
  10. Sutherland SE, Browman GP. Prophylaxis of oral mucositis in irradiated head and neck cancer patients: a proposed classification scheme of interventions and meta-analysis of randomized controlled trials. International Journal of Radiative Oncology Biology and Physics 2001; 49:917-30.
  11. Woo SB, Sonis ST, Monopoli MN, et al. A longitudinal of oral ulcerative mucositis in bone marrow trasplant recipients. Cancer 1993; 72: 1612-17

Nosotros subscribimos Los Principios del código HONcode de la Fundación Salud en la RedNosotros subscribimos los Principios del código HONcode.
Compruébelo aquí.

 

Otras publicaciones de Alejandro Melo Florián MD

Sobre el autor


Simple Clock

Comments

Comments are moderated, and will not be visible until one of the authors of this knol approves.

Tipos de piel y susceptibilidad a lesión por exposición a la luz solar


model-429733_1280

Crédito de imagen: pixabay

Homo sapiens sapiens comprende 3 grupos a saber: Caucasoide, Negroide y Mongoloide. Este sistema de clasificación permite incluir a los individuos con pieles pigmentadas dentro de los grupos negroide y mongoloide. Se ha desarrollado una clasificación de los tipos de piel en relación a su reacción a la exposición solar, que incluye 6 fototipos, clasificación conocida como la de Fitzpatrick y permite conocer la susceptibilidad de lesión dérmica por exposición a radiación UV.

En Colombia los resultados de estudios independientes a escala discreta muestran predominio de los fototipos III y IV, los factores medio ambientales de radiación UV que son medidos para nuestro país y que tienden a mostrar valores de exposición en el rango de “extremos”, hacen necesario conocer la importancia de las medidas preventivas y medicamentosas de bloqueadores químicos y físicos antisolares para evitar daño acumulativo que aumente fotoenvejecimiento y el riesgo de fotocarcinogénesis.

Homo sapiens sapiens has 3 main racial groups namely: Caucasoid, Negroid and Mongoloid. This classification allows the inclusion of individuals with pigmented skin in Negroid and Mongoloid groups. The classification of skin types in relation to their reaction to sun exposure, which includes 6 phototype, classification known as the Fitzpatrick classification reveals the susceptibility of skin injury from exposure to UV radiation.
In Colombia the results of independent studies show discrete scale predominance of skin type III and IV; the UV radiation shows exposure values in the range of “extreme” and it makes necessary to use preventive measures and medicinal chemical and physical blocker sunscreen to prevent cumulative skin damage resulting in photoaging and photocarcinogenesis.

Key words: Fitzpatrick classification – UV lesion – Skin types


Share

Nosotros subscribimos Los Principios del código HONcode de la Fundación Salud en la RedNosotros subscribimos los Principios del código HONcode.
Compruébelo aquí.

Introducción

Al hablar de los tipos de piel, es interesante mencionar que existe la diversidad en el ser humano. Las investigaciones más recientes sobre el ADN mitocondrial sugiere que la humanidad actual desciende de 3 mujeres en África, llamadas las “Evas mitocondriales”. Solamente 10 genes de todo el genoma humano determinan la apariencia. De tal manera, que nuestro genoma confirma que en medio de tanta homogeneidad, también tenemos espacio para la diversidad.
Desde un punto de vista antropológico, Homo sapiens sapiens comprende 3 grupos a saber: Caucasoide, Negroide y Mongoloide. Este sistema de clasificación permite incluir a los individuos con pieles pigmentadas dentro de los grupos negroide y mongoloide.De interés también son las correlaciones ecogeográficas entre pigmentación y gradientes climáticos y de latitud. En el siglo XIX, el naturalista Golger describió que los individuos cercanos al Ecuador tenían pieles oscuras y los que vivían en latitudes alejadas del Ecuador tenían pieles más claras. Esta fue una descripción preliminar al complejo fenómeno de la melanina, la pigmentación cutánea y la complexión de coloración.En la actualidad, se conocen los modelos de distribución y empaquetamiento de los melanosomas en pieles oscuras y claras, que permiten un mejor enfoque de la variación de color en los grupos humanos; igualmente se conoce que la coloración de la piel depende de las cantidades relativas de eumelanina y feomelanina, hemoglobina y carotenoides. Las diferencias existentes en colores de piel y cabello son genéticamente determinadas y se sabe que el fenotipo pigmentario es complejo. Solo hasta la fecha es conocido un gen, el del receptor 1 de melanocortina (MCR1) ha sido identificado para explicar las variaciones en la población normal.


Tipos de piel según respuesta a exposición solar.

Teniendo en cuenta la función primaria de defensa de la piel contra los efectos dañinos del medio ambiente, existen diversos mecanismos de protección frente a la radiación UV.  Desde una perspectiva clínica la reacción detallada de cada paciente frente a la luz solar permite conocer el riesgo relativo de desarrollar procesos agudos o crónicos debidos a la exposición a radiación ultravioleta (RUV), incluyendo melanoma y el resto de neoplasias cutáneas.  Es así como se ha desarrollado una clasificación de los tipos de piel en relación a su reacción a la exposición solar, que incluye 6 fototipos, ilustrados en la tabla 1.

Tabla 1. Fototipos de piel y su reacción a la exposición solar ,

Fototipo Color Reacción a UVA DME* en minutos Historia de quemadura o bronceado
I Claro, cabello rubio o rojo, con pecas y ojos azules Muy sensible 15-30 Siempre se quema, nunca se broncea
II Claro, cabello rubio o rojo, ojos azules o verdes Muy sensible 25-40 Siempre se quema, se broncea con dificultad
III Claro: Tez morena clara Sensible 30-50 Se quema poco, se broncea gradualmente
IV Café Claro: con ojos  y cabellos oscuros Moderadamente sensible 50-60 Se quema poco, se broncea bien
V Moreno: tez morena oscura Mínimamente sensible 60-90 Casi nunca se quema, se broncea profusamente
VI Negro Insensible o menos sensible 90-150 Nunca se quema, siempre se broncea intensamente

*Dosis Mínima de Eritema: es la cantidad de radiación que causa enrojecimiento de la piel. Depende del tipo de piel, de la intensidad de la radiación y del tiempo de exposición.
Una persona puede conocer de forma sencilla su grado aproximado de sensibilidad a la RUV en base al color natural de su piel y la tendencia a quemarse o a broncearse nada, lentamente con un color final suave, o rápido e intenso. El color natural de su piel debe observarse en áreas habitualmente no expuestas a la luz como la zona interna del brazo o del muslo.

Los individuos de raza caucasoide con fototipo I presentan baja tolerancia a la luz solar suelen ser individuos de piel clara, rubios o pelirrojos, con pecas o efélides. Al ser el grupo de mayor riesgo requiere medidas protectoras. Por otra parte, los individuos pigmentados a partir del fototipo IV presentan raramente o nunca, quemaduras solares. Estos individuos requerirán ocasionalmente dependiendo del índice UV, de medidas protectoras.

Aunque esta escala ha tenido críticas como pobre valor predictivo, pobre correlación con color de la piel y pobre correlación con sensibilidad a radiación UV, lo práctico de la clasificación de los 6 fototipos de Fitzpatrick es que no se basa en el fenotipo, sino en la descripción del paciente de su respuesta ante exposición solar, en su conveniencia clínica y en la correlación con valores de dosis mínima de eritema.

Otras escalas que evalúan color de piel y grado de pigmentación, como la de Taylor usan 15 patrones de color en tarjetas y son aplicables a los 6 fototipos de Fitzpatrick. La Escala de Taylor se ha empleado para evaluar respuesta de hiperpigmentación a terapia. También hay técnicas de medición cuantitativa de contenido de cromóforos en la piel, pendientes de validación.

Fototipos de piel y respuesta a Radiación UV.

Para optimizar la protección frente a RUV, se recomienda entre otras medidas, limitar el tiempo de exposición durante las horas de mayor intensidad de luz solar.
Para individualizar esta recomendación a cada paciente, es necesario conocer el concepto de dosis media de eritema (DME). DME es la cantidad de radiación necesaria para causar enrojecimiento de piel.
La Comisión Internacional de Iluminación (CIE) ha reportado que DME para fototipo I están en 20 miliJulios/cm2 y en 57 miliJulios/cm2 para fototipo IV . Los experimentos realizados con irradiación a longitudes de onda entre 20-80 mJ/cm2 han demostrado concordancia con los fototipos sometidos a fotoprueba con RUV, con valores indicados en la tabla 1.
 
Esto depende del tipo de piel, de la intensidad de la radiación y del tiempo de exposición. Este parámetro de medición en el paciente se complementa con el llamado índice Ultravioleta (UVI), desarrollado conjuntamente por el Servicio Nacional de Meteorología (NWS) de EE.UU. y la Agencia de Protección Ambiental (EPA) , la Academia Norteamericana de Dermatología (ACD), la Asociación Nacional de Médicos por el Ambiente y  el Centro de Control de Enfermedades (CDC).

Índice de radiación UV

El índice de radiación ultravioleta –índice UV-, surgió al constatarse que la dosis de eritema, expresada en Joules, al acumularse durante una hora en un metro cuadrado de piel humana, varía entre 0 y 1500. La metodología de índice UV se basa en la relación entre el ángulo en que está ubicado el Sol en las diferentes épocas del año, las mediciones de Ozono total y la radiación UV.

Por acuerdo internacional, se asigna el número 1 a 100 Joule/m2 hora, el 2 a 200 Joule/m2 hora y así sucesivamente hasta llegar al índice 15 que corresponde al tope de la escala.

El índice UV predice los niveles de radiación UV y evita los riesgos personales de sobreexposición. En Colombia, los Ministerios de Ambiente y de Minas y Energía elaboran mapas de los índices UV, que demuestran que en la zona de las cordilleras, dichos valores pueden llegar hasta 14, correspondiendo a niveles de exposición “extremos”.

En la tabla 2 se ilustran los índices UV, la intensidad del UV-B en una escala del 0 al 15, con la siguiente clasificación:

Tabla 2. Niveles de irradiación UVB.

Indice irradicac

A partir de la medición del Índice UV y las dosis tolerables para cada fototipo de piel según la clasificación de Fitzpatrick, se obtienen los tiempos de exposición permitidos sin riesgo, estos se proporcionan en minutos como indica la tabla 3.

Tabla 3. Tiempos de exposición permisibles en minutos para cada fototipo de piel.

 Minutos  F o t o t i p o   de P i e l
1 2 3 4 5 6
0
Indefinido
Indefinido
indefinido
indefinido
indefinido
Indefinido
1
112,0
140,0
175,0
218,7
273,5
341,8
2
56,0
70,0
87,5
109,4
136,7
170,9
3
37,3
46,7
58,3
72,9
91,2
113,9
4
28,0
35,0
43,8
54,7
68,4
85,5
5
22,4
28,0
35,0
43,7
54,7
68,4
6
18,7
23,3
29,2
36,5
45,6
57,0
7
16,0
20,0
25,0
31,2
39,1
48,8
8
14,0
17,5
21,9
27,3
34,2
42,7
9
12,4
15,6
19,4
24,3
30,4
38,0
10
11,2
14,0
17,5
21,9
27,3
34,2
11
10,2
12,7
15,9
19,9
24,9
31,1
12
9,3
11,7
14,6
18,2
22,8
28,5
13
8,6
10,8
13,5
16,8
21,0
26,3
14
8,0
10,0
12,5
15,6
19,5
24,4
15
7,5
9,3
11,7
14,6
18,2
22,8

 

Clasificación de fototipos de piel en Colombia

Indice irradicac

En estudios realizados en nuestro país en población pediátrica, de intervención para educación en fotoprotección, se estudiaron 547 niños. Los tipos de piel más comunes en todos los colegios fueron el III y el IV de la clasificación de Fitzpatrick (piel mestiza y negra).

Bases biológicas de los fototipos de piel

Para comprender como la pigmentación ocurre, es necesario repasar brevemente los conceptos anatómicos de epidermis y dermis.
Para comprender como la pigmentación ocurre, es necesario repasar los conceptos anatómicos de epidermis y dermis. La dermis constituye el 95% del espesor cutáneo, mientras que la epidermis constituye el 5% restante. La epidermis tiene 4 capas, a saber:

Estrato córneo La capa más superficial con células muertas y aplanadas que son continuamente descamadas y reemplazadas.
Estrato granular Comprende la capa de queratina
Estrato espinoso Comprende los queratinocitos, constituye el 95% de la epidermis
Estrato basal Comprende las células responsables del crecimiento de la epidermis. Las bandas fibrosas de esta capa la anclan a la dermis. Contiene los melanocitos, que transfieren pigmento a los queratinocitos con lo cual confieren a la piel su color distintivo.
La sensibilidad individual a la luz solar y la capacidad de broncearse depende del contenido de melanina de la epidermis. Un factor determinante del color de la piel depende del modelo de distribución de melanosomas dentro de los queratinocitos. Una vez adquiridos los melanosomas por los queratinocitos, son trasportados dentro de dichos queratinocitos hasta la superficie epidérmica; seguramente este proceso permitió adaptaciones evolucionarias a ambientes físicos y biológicos  cambiantes durante toda la historia evolucionaria de Homo sapiens.En individuos de piel clara, se distribuyen en forma de agregados a la membrana, mientras que en la piel oscura, tienden a ser mayores y a distribuirse de forma individual. Adicionalmente se ha encontrado que el contenido y la composición de melanina en las células del estrato córneo, el tamaño de los melanosomas y su forma esférica se correlacionan con el fototipo de la piel y con exposición crónica al sol

Es conocido que la eumelanina protege mejor el ADN que la feomelanina de los efectos de radiación UVB y se correlaciona consistentemente con el fenotipo visual. Los individuos con fototipo I tienen las más bajas concentraciones de eumelanina, mientras que los individuos con fototipos II y III muestran mayores concentraciones. Las concentraciones de feomelanina fueron variables y no mostraron relación no ningún fototipo de piel en particular, aunque en individuos con piel tipo I la proporción de feomelanina/melanina fue mayor frente a los individuos de piel más oscura lo que significa que hay tendencia a preferencia por feomelanogénesis en este fototipo cuando se estimula la pigmentación, .

Respuesta de melanocitos a radiación UV

Al exponer pieles de diversos fototipos a 1 DME de radiación UV, se encontró que la piel más oscura respondía mejor al estímulo UV y los melanocitos aumentaron ligeramente la producción de enzimas melanogénicas y de melanina después de una semana, mientras que pieles más claras mostraron poco o ningún aumento. Se requirió mas de 1 DME para la neomelanogénesis o respuesta de bronceo de piel clara, mientras que en la piel más oscura 1 DME logró un bronceo o neomelanogénesis profunda. Estos cambios resultaron de la interacción entre melanocitos y queratinocitos  que generaron aumento de eumelanina en la piel.

Todas estas respuestas están genéticamente reguladas, dependiendo de polimorfismo en genes particulares, que afectan la respuesta defensiva de la piel a la radiación UV y según el grado de adaptación, pueden evitar o acelerar el riesgo de melanoma cutáneo.

Además  en respuesta a radiación UV la inducción de fotoproductos está inversamente correlacionada con el fototipo de piel, existiendo mayor producción de dímeros de ciclobutano-pirimidina y de fotoproductos 6-4 de pirimidina-pirimidona en individuos de piel clara, y dicha inducción es amortiguada por la melanogénesis que es mayor en los individuos con pieles oscuras.

También se describe aumento del número de melanocitos activos en el estrato basal de la epidermis, simultáneamente con aumento de la transferencia de melanosomas a los queratinocitos, en el cual la tanto la hormona melanotropina (alfa MSH) y sus receptores tienen un papel importante.

Conclusiones

Los instrumentos para evaluación de tipos de piel buscan conocer los riesgos de la exposición a radiación UV. Hay diferentes instrumentos de clasificación, algunos con mediciones más exactas del contenido de cromóforos en la piel, otros enfocados en los cambios de pigmentación en respuesta a la terapia.

La utilidad de la clasificación de los fototipos es su correlación con parámetros como dosis mínima de eritema (DME), que en función de otras mediciones como el índice UV, permite contrarrestar la exposición ambiental más allá del tiempo permisible, con lo cual permite que la recomendación  médica con respecto a la exposición solar esté individualizada para cada sujeto.

Aunque en Colombia  los resultados de estudios independientes a escala discreta muestran predominio de los fototipos III y IV, los factores medio ambientales de radiación UV que son medidos para nuestro país y que tienden a mostrar valores de exposición en el rango de “extremos”, hacen necesario conocer la importancia de las medidas preventivas y medicamentosas de bloqueadores químicos y físicos antisolares para evitar daño acumulativo que aumente fotoenvejecimiento y el riesgo de fotocarcinogénesis.

Referencias

  1. Alaluf S, et al. Variation in melanin content and composition in type V and VI photoexposed and photoprotected human skin: the dominant role of DHI. Pigment Cell Res 2001;14(5):337-47.
  2. Centers for Disease Control and Prevention (CDC). Media dissemination of and public response to the Ultraviolet Index–United States, 1994-1995. Morb Mortal Wkly Rep 1997;46(17):370-3
  3. Cruz AR, et al. Impact of a UV education program on the knowledge and behavior in elementary school children. Biomédica 2005; 25(4): 533-538
  4. Dorr RT, et al. Increased eumelanin expression and tanning is induced by a superpotent melanotropin [Nle4-D-Phe7]-alpha-MSH in humans. Photochem Photobiol. 2000; 72(4):526-32
  5. FitzPatrick TP, Polano MK, Suurmond D, Eds: Atlas de Dermatología Clínica. Doyma, 1986.
  6. Hearing VJ et al. Physiological regulation of Melanocyte proliferation and differentiation in human skin following Ultraviolet radiation. Pigment Cell Research 2004; 17(4): 440-441
  7. http://www.epa.gov/sunwise/uvindex.html
  8. http://www.ideam.gov.co/sectores/ozono/estado_actual.asp
  9. http://www.upme.gov.co/Docs/Atlas_Radiacion_Solar/6-Mapas_Indice_UV.pdf
  10. http://www.who.int/mediacentre/factsheets/fs271/en/
  11. Lu H, et al: Melanin content and distribution in the surface corneocyte with skin phototypes. Br J Dermatol 1996;135(2):263-7.
  12. Martínez SO: El sol y la piel. MedUNAB 2002; 5(13):44.50
  13. Pawelek JM et al: Molecular cascades in UV-induced melanogenesis: a central role for melanotropins? Pigment Cell Res 1992; 5(5 Pt 2):348-56
  14. Quevedo WC et al. Role of light in human skin color viariation. Am J Phys Anthropol 1975; 43(3):393-408
  15. Rees JL. Genetics of hair and skin color Annual Review of Genetics 2003; 37: 67-90
  16. Smit NP et al. Melanin offers protection against induction of cyclobutane pyrimidine dimers and 6-4 photoproducts by UVB in cultured human melanocytes. Photochem Photobiol 2001; 74(3):424-30
  17. Smit NP et al. Variations in melanin formation by cultured melanocytes from different skin types.Arch Dermatol Res 1998; 290(6):342-9
  18. Snellman E, et al. Ultraviolet erythema sensitivity in anamnestic (I-IV) and phototested (1-4) Caucasian skin phototypes: the need for a new classification system. Photochem Photobiol1995;62(4):769-72.
  19. Taylor SC & Cook-Bolden F: Defining Skin of Color Cutis 2002; 69: 435-437
  20. Taylor SC et al: The Taylor Hyperpigmentation Scale: a new visual assessment tool for the evaluation of skin color and pigmentation. Cutis 2005; 76(4):270-4.
  21. Thody AJ et al. Pheomelanin as well as eumelanin is present in human epidermis. J Invest Dermatol 1991; 97(2):340-4.
  22. Thong HY et al. The Patterns of Melanosome Distribution in Keratinocytes of Human Skin as One Determining Factor of Skin Colour  Br J Dermatol 2003; 149(3):498-505
  23. van Nieuwpoort F, et al. Tyrosine-induced melanogenesis shows differences in morphologic and melanogenic preferences of melanosomes from light and dark skin types. J Invest Dermatol 2004; 122(5):1251-5
  24. Wagner JK et al. Comparing Quantitative Measures of Erythema, Pigmentation and Skin Response using Reflectometry Pigment Cell Res  2002; 15: 379-384
  25. Wakamatsu K, et al. Diversity of pigmentation in cultured human melanocytes is due to differences in the type as well as quantity of melanin. Pigment Cell Research 2006; 19(2): 154

Nota: Esta información tiene como objetivo orientar al paciente y no reemplaza el adecuado consejo y tratamiento médico por un profesional idóneo.

Nosotros subscribimos Los Principios del código HONcode de la Fundación Salud en la RedNosotros subscribimos los Principios del código HONcode.
Compruébelo aquí.

 

http://www-knol-opensocial.googleusercontent.com/gadgets/ifr?url=http%3A%2F%2Fwww.gstatic.com%2Fsites-gadgets%2Fiframe%2Fiframe.xml&container=knol&view=default&lang=en&country=ALL&sanitize=0&v=1019426adde2a497&libs=core&parent=http%3A%2F%2Fknol.google.com%2Fk%2Fknol%2Fsystem%2Fcomponents%2Fgadgets%2Fstatic_files#up_scroll=no&up_iframeURL=http%3A%2F%2Fwww.scoop.it%2Ft%2Ftemas-sobre-reumatologia-y-aparato-osteomuscular%2Fjs%3Fformat%3Dsquare%26numberOfPosts%3D9%26title%3DTemas%2520sobre%2520reumatolog%25C3%25ADa%2520y%2520aparato%2520osteomuscular%26speed%3D3%26mode%3Dnormal%26width%3D250&st=e%3DAMGcXRJ6tnA%252BS6RsQmvLO0menHb13%252B8ckmzPNS8skaaVY%252BRoudUt6NeRW%252FVlmzzSmCBz3gkUiWjCk51OoZ9Y%252FAjq6rPevVJ1dtaTxRYU271hLEbhjHbrSZvQxTo6nkrK0SywFGqdR6KT%26c%3Dknol&rpctoken=-2038719691728264944

Sobre el autor

This knol is part of the collection: Dermatología
« Previous (Envejecimiento cutáneo por exposició…
(Carcinoma basocelular) Next »

Comments

Comments are moderated, and will not be visible until one of the authors of this knol approves.

Edit this knol
Write a knol

Set display language:Spanish – español

Alejandro Melo-Florián

Writer, Internal Medicine specialist. Bogotá D.C -Colombia
Colombia
Your rating:

Loved it
All Rights Reserved.

Change

You have permission to manage this knolSettings
Version: 18

Last edited: Oct 8, 2011 2:00 PM.

Activity for this knol

This week:

38pageviews

Totals:

1283pageviews

Flag inappropriate content

Generalidades sobre cáncer


Generalidades sobre cáncer

Aspectos sobre cinética celular

En el organismo normal y maduro ocurren alrededor de 25 millones de mitosis cada segundo, para reparar la enorme población celular que integra dicho organismo. Los tipos de crecimiento celular son variables, hay tejidos de alta tasa de recambio, otros tejidos en contraste, son de muy escaso o nulo recambio. Según el tipo de población celular comprometida, consecuentemente será el comportamiento de la neoplasia derivada. El impacto sobre tejidos de con alta tasa de recambio celular o tejidos de renovación como la médula ósea y la mucosa del tracto gastrointestinal es responsable de los frecuentes efectos secundarios de la quimioterapia antineopláscia, como descensos de elementos formes de la sangre, y/o mucositis.

Share

Nosotros subscribimos Los Principios del código HONcode de la Fundación Salud en la RedNosotros subscribimos los Principios del código HONcode.
Compruébelo aquí.

Definición de cinética celular

La cinética celular se define como es estudio cuantitativo de la proliferación celular; estudia el recambio, o tasa de cambio de las células.

Cinética celular y patogénesis del cáncer

Dentro de los conceptos básicos en oncología, es necesario hacer una descripción de los principios de proliferación celular o cinética celular, por dos razones importantes.
·   Primera: para explicar como se forma un tumor y como crece.
·   Segunda: para comprender las bases del tratamiento del cáncer: los medicamentos para quimioterapia antineoplásica tienen mecanismos de acción en determinadas fases del ciclo celular.
Figura 1. Ciclo celular normal

 

 

Ciclo celular en las células normales

Es el conjunto de eventos celulares trascurridos entre mitosis y mitosis. Es de importancia para comprender el concepto de la cinética celular.
Arriba en la figura 1 se muestra el ciclo y la tabla 1 en forma complementaria describe los principales procesos que se llevan a cabo durante todas las fases del ciclo celular.
Tabla 1. Descripción de fases del ciclo celular normal.

 

 Siempre ocurre algún tipo de síntesis bioquímica durante cada fase del ciclo celular. En la figura 2se muestran los fenómenos de la mitosis o fase M.
 
Figura 2. La Mitosis
 
 
 
En la tabla 2 se describen los eventos moleculares y celulares durante la mitosis.
 
Tabla 2. Eventos durante las fases de la mitosis
Fase mitótica
Fenómenos
Profase
Condensación de sustancia nuclear: se forman los cromosomas.
Formación de huso mitótico a partir de los precursores sintetizados durante la fase G2.
Migración de cromosomas a los largo del huso mitótico.
Metafase
Alineamiento de cromosomas en ecuador del núcleo.
Anafase
Migración de cromosomas a los polos opuestos del huso mitótico.
Telofase
Formación de núcleos hijos.
Redispersión de cromatina, formación de membranas nucleares y división de células hijas.
 

Tiempo de ciclo o tiempo de generación

El tiempo del ciclo (o tiempo de generación) se define como el tiempo en el cual una célula completa un ciclo es decir, el tiempo que transcurre entre el final de una mitosis y el final de la siguiente mitosis. Se trata de un valor fijo para cada tipo de tejido, por ejemplo, para las células de la mucosa intestinal es de los más cortos al ser de 24 horas; la vida media de las células diferenciadas de mucosa intestinal está alrededor de 72 horas. Igualmente en la médula ósea, las células poseen un tiempo de ciclo de aproximadamente 24 horas (Fase S: 13-14 horas).
La reposición de aproximadamente 25 billones (25 x 1012) de eritrocitos que se reemplazan completamente cada 120 días, implica producción de 2,5 millones de eritrocitos cada segundo.
Eritrocitos/segundo
* Segundos/día =
Eritrocitos/día
Eritrocitos en 120 días
2.500.000
*  86.400 =
216.000.000.000
25.920.000.000.000
                   (24h*60min/h*60seg/min)
Según sus características de crecimiento hay tres clases de tejidos, como se muestra en la tabla 3
 
Tabla 3. Clases de tejidos según crecimiento
Tipo de tejido
Órganos/Sistemas
Características
De renovación
Médula ósea, células germinativas, epitelio de tracto digestivo
Reposición a partir de fondo común de células madre.
De expansión
Hígado, riñón, glándulas endocrinas
En hígado hay posibilidad de aumentar tasa de división celular: explica regeneración tras resección quirúrgica o traumas.
Estático
Sistema nervioso, sistema muscular.
Poca o nula capacidad de reparación. Daño deja secuelas.

Tiempo de duplicación

El tiempo de duplicación se define como el tiempo necesario para que el número de células se duplique. En el paciente, dicho tiempo de duplicación se refiere a duplicación del volumen y depende de duración del ciclo celular, fracción de crecimiento y ritmo de muerte celular.

Tipos de crecimiento celular

Crecimiento exponencial simple.

Este tipo de crecimiento sigue un típico patrón de cinética de primer orden o exponencial.
 
Un óvulo fertilizado proporciona el mejor ejemplo de un organismo en el cual el tiempo de ciclo equivale al tiempo de duplicación. El zigoto unicelular se divide y produce dos células hijas, que se dividen sucesivamente en 4 células, luego 8 células y así posteriormente a 16, 32, 64 en adelante. Esto es crecimiento exponencial simple y una gráfica lineal que describe este tipo de crecimiento se muestra en la figura 3.
Figura 3. Crecimiento exponencial simple
Después de 10 ciclos habrá 1.024 células, después de 20 ciclos 1´048.576 y después de 30 ciclos, más de mil millones de células: 1´073.741.824. Generalmente la tasa de crecimiento de un tejido depende del aporte de nutrientes; algunas células sin nutrientes se necrosan; otras células salen del ciclo celular y pasan a la fase G0(Ge Cero).
 

Crecimiento exponencial en organismo normal.

En el embrión, las células proliferantes se transforman en células especializadas mediante un proceso de diferenciación, sin reversión hacia la forma embrionaria primitiva. Las células progenitoras -por decir un ejemplo osteoblastos-, se diferencian a células maduras (osteocitos). Así surgen los tejidos de los diversos órganos del cuerpo.
Una vez ocurrido el crecimiento exponencial, luego es el tiempo de ciclo celular el que se prolonga exponencialmente y la reproducción celular se desacelera, dando lugar a crecimiento gompertziano.
 

Crecimiento exponencial en tumores.

Ocurre crecimiento exponencial simple en las primeras etapas de crecimiento de un tumor maligno, que se modifica a medida que el tumor crece.
 

Crecimiento gompertziano

Es el crecimiento en el cual una vez hay masa aumentada, el crecimiento exponencial se sustituye por retardo exponencial del mismo como muestra la figura 4.
 
Figura 4. Crecimiento celular gompertziano.
A medida que el tejido progresa de la fase exponencial hacia la fase de meseta, más y más células pasan a fase G0. El número de células en división activa (fracción de crecimiento) se reduce hasta que la población celular es constante.
 

Crecimiento gompertziano en organismo normal.

Es el crecimiento que ocurre en las células normales del organismo maduro y explica las casi 2 billones (2 millones de millones) de divisiones celulares en el adulto cada 24 horas, correspondientes a 25 millones de divisiones celulares/segundo.
Cuando se alcanza un estadio de estabilidad o meseta, la fracción de crecimiento es el suficiente para mantener el tamaño del tejido; las células nuevas llegan en la misma magnitud de las células que mueren, de modo que el organismo presenta esta situación fisiológica de meseta. Aunque los procesos parecen ser estáticos, en realidad se trata de un estado de equilibrio dinámico.
 

Crecimiento gompertziano en tumores.

Los tiempos de duplicación no permanecen constantes como en las curvas de crecimiento exponencial, sino que se alargan progresivamente a medida que el crecimiento continúa.
Figura 4 Comparación de crecimiento Gompertziano en tejido normal vs. tejido canceroso.
Se muestran las fases tempranas de crecimiento gompertziano en tumores; nótese que en lugar de una línea recta constante, se obtiene una curva (flecha); después el crecimiento es exponencial.
 
Al comparar las curvas gompertzianas de crecimiento normal frente al de cáncer (figura 4), la curva inferior muestra el crecimiento de tejido normal que llega a la fase de meseta con menor población celular a diferencia de la curva de cáncer. A diferencia del tejido normal que en el estadio de meseta no cambia de tamaño por equivalencia en los ritmos de nacimiento y muerte celular, el tejido neoplásico exhibe proliferación y crecimiento celular de tipo exponencial que podría eventualmente llegar a un estadio de estabilidad (línea intermedia “cáncer”); desafortunadamente el paciente muere durante el crecimiento exponencial.
 

Fracción de crecimiento

La subpoblación celular en fases del ciclo celular (GS G2 y M) diferente a G0, es la llamada fracción de crecimiento.
Las células en G0 que regresan al ciclo celular son una proporción desconocida pero importante: es la reserva del organismo para reconstrucción de poblaciones celulares.
Todas las poblaciones celulares están constituidas por células que proliferan activamente, células en reposo y células a punto de morir.
De la “fracción de crecimiento” depende la renovación de diversos tejidos, como se comenta en latabla 4.
 
Tabla 4. Fracción de crecimiento en los diferentes tejidos.
Tipo de tejido
Propiedades tisulares en función de la “fracción de crecimiento”
De Renovación
La médula ósea normal posee una fracción de crecimiento menor al 5% conjuntamente con tiempo de ciclo breve (24 horas).
De Expansión
El tejido hepático en estado de estabilidad tiene una relación de crecimiento moderada, con tiempo de ciclo largo: es un tejido de expansión o renovación lenta. Su gran población de células potencialmente proliferativas (G0 en reposo temporal) le permite regeneración bajo demanda.
Estático
El tejido nervioso tiene poca fracción de crecimiento, un tiempo de ciclo extremadamente prologando y aparentemente, muy poca capacidad de regeneración. Esta combinación de atributos representa una población celular estática.
 

Control de las células normales

Antes de tratar sobre tejido neoplásico, se revisarán algunas observaciones sobre los mecanismos de control de organismo.
Cuando un órgano alcanza un tamaño determinado, sus características de crecimiento cambian: bajan el número de células que se encuentran en el ciclo celular, el tiempo de ciclo se prolonga. Una vez en el estadio de estabilidad, el número de células que nacen es el mismo de las que mueren: 25 millones de mitosis por segundo en un adulto promedio. El ADN de todas las células el control genético evita el sobrecrecimiento flagrante de órganos y tejidos.
A medida que la célula se diferencia, algunos genes son reprimidos, mientras que otros son activados permanentemente. El ADN reprimido no se pierde físicamente de la célula, pero ya no hace transcripción a términos de ARN mensajero y síntesis proteica ulterior.
Estos cambios permanentes brindan a cada tipo de célula sus características individuales: un hepatocito es absolutamente diferente de una neurona, por la expresión de diferentes genes.
 

Crecimiento organotípico

Es el crecimiento de un órgano controlado genéticamente de modo que al alcanzar su tamaño predeterminado, las células normales envían señales químicas que detienen la división de muchas células, con excepción de la “fracción de crecimiento”. Estas pocas células activas conservan el tamaño del órgano.
Las células que han sido “apagadas” (G0) son de 2 tipos:
–            En reposo temporal: regresan al ciclo celular con determinados estímulos
–            Terminales estériles: salen permanentemente del ciclo celular.
 
Las células en reposo temporal muestran expresión genética, que es dependiente de la presencia continua de la señal, en este caso, que el tamaño del órgano se encuentre dentro de sus límites normales.
Las células terminales estériles tienen una represión permanente de genes y son incapaces de reingresar al ciclo celular, aun con cambios en el tamaño del órgano. Estas células viven durante algún tiempo, según su existencia predeterminada para posteriormente sufrir muerte celular programada.
 

Control de células cancerosas

Las células cancerosas difieren de sus contrapartes normales en varias maneras, se originan de células normales expuestas a estímulos como:
·   substancias químicas carcinogénicas
·   radiaciones
·   transformación oncogénica
Muchas de las células neoplásicas han perdido diferenciación de sus tejidos de origen. Las células cancerosas se parecen más a las células embrionarias que a las diferenciadas, incluso algunas producen proteínas fetales.
A medida que el tumor envejece, un importante porcentaje (generalmente más del 5%) de células permanece en la fracción de crecimiento, esta es una de las diferencias que notables entre tejidos con cáncer vs. normales. Esto significa que el tumor tendrá un tiempo de duplicación relativamente corto, aun cuando las células malignas tengan un tiempo de ciclo prolongado.
El crecimiento tumoral es peligroso para el paciente  porque no obedece las reglas de los tejidos normales; llega el momento en que cesa el crecimiento organotípico, porque las restricciones por tamaño de los tejidos de órganos normales no aplican en los tejidos neoplásicos.
A medida que el tumor sólido crece, pueden cambiar sus características de crecimiento. Una razón es la falta de aporte sanguíneo adecuado en el centro del tumor, porque el aporte sanguíneo se mantiene en la periferia de la masa neoplásica y la porción central tiende a necrosarse. A pesar de la pérdida celular, el cáncer sigue diseminándose periféricamente porque la velocidad de crecimiento sobrepasa la de muerte celular.
La falta de aporte sanguíneo en algunas regiones de un tumor complica el tratamiento antineoplásico; si el fármaco no llega a su blanco mediante la sangre, hay que recurrir a otros métodos de administración.
Las características de crecimiento de los diversos tipos de cáncer varían ampliamente como se muestra en la Tabla 5. El rango varía de 4 a 500 días para que un tumor duplique su volumen.
 
Tabla  5 Tiempos de duplicación de masa tumoral para algunos cánceres.
Tipo de cáncer
Tiempo de duplicación en días
Leucemia linfoblástica aguda
4 días
Sarcoma neurogénico
12 días
Metástasis pulmonares de Cáncer de mama
90 días
Cáncer de mama
100 días
Cáncer de pulmón (primario y metastático )
5-500 días
Carcinoma epidermoide
107 días.
 

Parámetros cinéticos y cáncer

La descripción de cada uno de los parámetros cinéticos pertinentes al crecimiento tumoral será repasada, para comprender como se emplean los antineoplásicos en el tratamiento del cáncer.
Varios fármacos antineoplásicos son específicos de ciclo celular, actuando sobre células cancerosas en alguna fase activa del ciclo celular. En general carecen de acción sobre las células en reposo (G0) o células sin capacidad de división. Dichos fármacos son selectivamente tóxicos para las células en división, algunos son tóxicos en una sola fase del ciclo celular; otros lo son en más de una fase.
 

Rol del ciclo celular en uso de antineoplásicos

Si un fármaco es específico para una fase del ciclo celular, tendrá poca actividad en otras fases del ciclo. En un momento dado, algunas células estarán en fase S, otras en G1 o G2 y algunas en fase M; esto significa que no todas las células del tumor son afectadas por un sólo antineoplásico, de aquí que sea necesaria combinación de poliquimioterapia.
Para eliminar las células tumorales, una manera de abordar este problema es que todas las células se encuentren simultáneamente en la misma fase del ciclo celular. Si esto ocurriera, el antineoplásico hipotético destruiría a todas las células en división al mismo tiempo y entonces solo se necesitaría administrar el tratamiento durante una hora. Esto no ocurre en la realidad y la duración del ciclo celular influye sobre la eficacia del antineoplásico. Si la fase es larga, aumenta la probabilidad de que muchas células se encuentren en esa fase particular y serán vulnerables a la acción del antineoplásico siempre y cuando su disponibilidad sea también larga.
En contraste, los ciclos celulares rápidos incrementan la probabilidad que más células lleguen a la fase vulnerable del ciclo celular con disponibilidad más corta del antineoplásico, resultando en mejor respuesta clínica.
Un antineoplásico es más tóxico para el tumor que para el tejido de origen, porque la mayoría de los tumores tienen tiempos de ciclo celular más cortos; sin embargo, los tejidos de renovación, como médula ósea y epitelio intestinal se ven afectados, originando cuadros clínicos por depresión medular y mucositis.
 

Fracción de crecimiento tumoral

En muchos tumores, la fracción de crecimiento (células en proliferación activa) es mayor que la de los tejidos normales. Este mayor conjunto de células en división activa sustenta la eficacia del tratamiento porque el antineoplásico, usualmente afecta células susceptibles. A manera de ejemplo, mientras las células de la médula ósea tienen una fracción de crecimiento cerca al 5% de la población total, algunos tipos celulares de cáncer de mama poseen una fracción de crecimiento de 40%. La toxicidad diferencial es mayor para los tejidos con mayor “fracción de crecimiento”.

Pérdida celular tumoral.

El incremento de la “fracción de crecimiento” también hace que haya mayor recambio celular en el tumor.
En las diferentes subpoblaciones celulares del tumor, cuando algunas se vuelven diferenciadas no reingresan con facilidad al ciclo celular, en consecuencia se reduce la “fracción de crecimiento” del tumor. En este contexto, son útiles los antineoplásicos capaces de inducir diferenciación en las células cancerosas.
 

Población de células cancerosas y antineoplásicos.

Si una dosis de antineoplásico destruye el 50% de células en división activa, destruye aproximadamente 20% de todas las células cancerosas y 2-2.5% de todas las células de la médula ósea.
Dada la gran reserva de proliferación de la médula ósea (células G0 temporalmente inactivas), el 2- 2.5% de células pueden ser repuestas rápidamente (tiempo de ciclo de 24 horas) por el organismo en los periodos entre dosis del antineoplásico.
Esto quiere decir que si bien dosis superiores de antineoplásico eliminarían más células cancerosas, también afectarían la reserva de proliferación de la médula ósea, originando cuadros clínicos por supresión medular, como anemia, trombocitopenia o agranulocitosis.

Recursos adicionales en la web

Blog Temas en biología

 

 

Sobre el autor


Simple Clock

                          Share

Comments

Comments are moderated, and will not be visible until one of the authors of this knol approves.

Edit this knol
Write a knol
Set display language:Spanish – español

Alejandro Melo-Florián

Writer, Internal Medicine specialist. Bogotá D.C -Colombia
Colombia
Your rating:

Loved it

Share and invite

This knol is published.
Change
You have permission to manage this knolSettings
Version: 18

Versions

Last edited: Oct 22, 2011 5:03 PM.

Activity for this knol

This week:

154pageviews

Totals:

1255pageviews

Flag inappropriate content